robbiblubber.org

C# Coding Guidelines

Version 1.0

Introduction

robbiblubber.org coding guidelines typically follow the coding style recommendations and conventions
accepted by the community for a specific programming language while trying to maintain common ideas
and traditions, especially when denoting scope and visibility of code elements.

Generally, class, member, parameter names should be identical in all language ports of a given piece
of code, except for naming style (meaning a method may be called “CopyElement”, “copyElement”, or
“copy_element” in different languages, but should never be named “copy”).

All language constructs should always be commented in a way that supports automatic documentation
generation.

In this document, rules for protected members also apply to private protected and internal protected.
Static and non-static elements follow the same rules.

Each type should be defined in a file with the type name. An assembly should not contain more than
one root namespace.

1 Visibility

Visibility rules apply to all types and members.

Public types or members are unmarked.

Private, protected, and internal types or members start with a leading underscore.

Types or members that should only be used under specific circumstances start with two leading
underscores.

2 Namespaces

Namespaces are Pascal case, starting with "Robbiblubber.".

3 Types

This chapter defines naming conventions for types.

3.1 Classes

Classes and Structs are always Pascal case. The class name should be a noun or a noun with
descriptive attributes.

Classes derived from Exception end with "Exception". Classes derived from Attribute end with
"Attribute". Also, classes derived from EventArgs end with "EventArgs"

3.2 Interfaces

Interfaces are always Pascal case, starting with
applicable.

The interface name should be an adjective if

3.3 Enumerations
Enumerations are always Pascal case. The name should be singular and should never end with “Enum”.

3.4 Delegates

Delegates are always Pascal case. The name should reassemble a method name, therefore most likely
being a verb, and should never end with “Delegate”.

Event handler delegates end with "EventHandler".

4 Members

This chapter defines naming conventions for type members.

4.1 Fields
Fields are Pascal case. The field name is typically a noun or adjective.

4.2 Properties

Properties are Pascal case. The property name is typically a noun or adjective.

4.3 Methods

Methods are Pascal case. Method names should be verbs.

4.4 Events
Events are Pascal case. Event names frequently are participles.

4.5 Constants and Enumeration Values

Constants and enumeration values are upper case. Especially static read-only properties may be
considered constants if this makes sense in the given context.

5 Variables and Parameters

This chapter defines naming conventions for type variables and parameters.

5.1 Variables

Local variables are camel case.

5.2 Parameters

Parameters are camel case.

6 Comments

This chapter describes the usage of comments.

6.1 Documentation Comments

Each type or member should have an XML documentation comment ("//[").

6.2 Member Grouping

Fields, constructors, properties, methods, events, overrides should be grouped by a box of 80 slashes
regarding visibility. Nested types and interface implementations should also be introduced by such a
box, named [class|enum]|...|override|interface] and type name.

6.3 Code Comments

Inline comments typically start at position 81 and are single line comments ("//"). Longer, descriptive
comments may be multi-line ("/*", ™/") if useful.

7 Example

namespace Robbiblubber.Naming.Example
{
/// <summary>This is an example class for coding guidelines.</summary>
public class Example: SampleBase, IUsable
{
[T 7777777777777 777777777777
// private static members //

N o o o o o o o N s

/// <summary>Private static field.</summary>
private static int _SomeNumber = 42;

[1777/7/7777
// constructors //

N o o o N

/// <summary>Creates a new instance of this class.</summary>
/// <param name="arg">Argument.</param>

public Example (int arg)

{}

L1111 00777707077 77777 7777777777 77
// public properties //
L1177 77707 77777077 777

/// <summary>Gets or sets the name.</summary>
public string Name { get; set; }

[I1177777077 7777077777777 777
// public methods //
L1111 70 77777707 777777 7777777777 77

/// <summary>Generates a number.</summary>
/// <returns>Returns a number.</returns>
public int GenerateNumber ()
{
return _SomeNumber; // a comment

}

L1177 00 7770007777077 77 70777707 777

// [override] SomeBase //

JILTTIILII000 7711011000770 1017700777711777077771117707777711770777711117077771117

/// <summary>Initializes the instance.</summary>
protected override void Init()

{}

L1770 7777777770777 777
// [interface] IUsable //
[0 77777777 77

/// <summary>Uses the item.</summary>
public void Use ()
{}

Sample: C# code

Version History

Version 1.0 2017-04-22 released

